20 research outputs found

    Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings

    Get PDF
    Importance: Telemedicine is accelerating the remote detection and monitoring of medical conditions, such as vision-threatening diseases. Meaningful deployment of smartphone apps for home vision monitoring should consider the barriers to patient uptake and engagement and address issues around digital exclusion in vulnerable patient populations. Objective: To quantify the associations between patient characteristics and clinical measures with vision monitoring app uptake and engagement. Design, Setting, and Participants: In this cohort and survey study, consecutive adult patients attending Moorfields Eye Hospital receiving intravitreal injections for retinal disease between May 2020 and February 2021 were included. Exposures: Patients were offered the Home Vision Monitor (HVM) smartphone app to self-test their vision. A patient survey was conducted to capture their experience. App data, demographic characteristics, survey results, and clinical data from the electronic health record were analyzed via regression and machine learning. Main Outcomes and Measures: Associations of patient uptake, compliance, and use rate measured in odds ratios (ORs). Results: Of 417 included patients, 236 (56.6%) were female, and the mean (SD) age was 72.8 (12.8) years. A total of 258 patients (61.9%) were active users. Uptake was negatively associated with age (OR, 0.98; 95% CI, 0.97-0.998; P = .02) and positively associated with both visual acuity in the better-seeing eye (OR, 1.02; 95% CI, 1.00-1.03; P = .01) and baseline number of intravitreal injections (OR, 1.01; 95% CI, 1.00-1.02; P = .02). Of 258 active patients, 166 (64.3%) fulfilled the definition of compliance. Compliance was associated with patients diagnosed with neovascular age-related macular degeneration (OR, 1.94; 95% CI, 1.07-3.53; P = .002), White British ethnicity (OR, 1.69; 95% CI, 0.96-3.01; P = .02), and visual acuity in the better-seeing eye at baseline (OR, 1.02; 95% CI, 1.01-1.04; P = .04). Use rate was higher with increasing levels of comfort with use of modern technologies (β = 0.031; 95% CI, 0.007-0.055; P = .02). A total of 119 patients (98.4%) found the app either easy or very easy to use, while 96 (82.1%) experienced increased reassurance from using the app. Conclusions and Relevance: This evaluation of home vision monitoring for patients with common vision-threatening disease within a clinical practice setting revealed demographic, clinical, and patient-related factors associated with patient uptake and engagement. These insights inform targeted interventions to address risks of digital exclusion with smartphone-based medical devices

    Development and international validation of custom-engineered and code-free deep-learning models for detection of plus disease in retinopathy of prematurity: a retrospective study.

    Get PDF
    BACKGROUND: Retinopathy of prematurity (ROP), a leading cause of childhood blindness, is diagnosed through interval screening by paediatric ophthalmologists. However, improved survival of premature neonates coupled with a scarcity of available experts has raised concerns about the sustainability of this approach. We aimed to develop bespoke and code-free deep learning-based classifiers for plus disease, a hallmark of ROP, in an ethnically diverse population in London, UK, and externally validate them in ethnically, geographically, and socioeconomically diverse populations in four countries and three continents. Code-free deep learning is not reliant on the availability of expertly trained data scientists, thus being of particular potential benefit for low resource health-care settings. METHODS: This retrospective cohort study used retinal images from 1370 neonates admitted to a neonatal unit at Homerton University Hospital NHS Foundation Trust, London, UK, between 2008 and 2018. Images were acquired using a Retcam Version 2 device (Natus Medical, Pleasanton, CA, USA) on all babies who were either born at less than 32 weeks gestational age or had a birthweight of less than 1501 g. Each images was graded by two junior ophthalmologists with disagreements adjudicated by a senior paediatric ophthalmologist. Bespoke and code-free deep learning models (CFDL) were developed for the discrimination of healthy, pre-plus disease, and plus disease. Performance was assessed internally on 200 images with the majority vote of three senior paediatric ophthalmologists as the reference standard. External validation was on 338 retinal images from four separate datasets from the USA, Brazil, and Egypt with images derived from Retcam and the 3nethra neo device (Forus Health, Bengaluru, India). FINDINGS: Of the 7414 retinal images in the original dataset, 6141 images were used in the final development dataset. For the discrimination of healthy versus pre-plus or plus disease, the bespoke model had an area under the curve (AUC) of 0·986 (95% CI 0·973-0·996) and the CFDL model had an AUC of 0·989 (0·979-0·997) on the internal test set. Both models generalised well to external validation test sets acquired using the Retcam for discriminating healthy from pre-plus or plus disease (bespoke range was 0·975-1·000 and CFDL range was 0·969-0·995). The CFDL model was inferior to the bespoke model on discriminating pre-plus disease from healthy or plus disease in the USA dataset (CFDL 0·808 [95% CI 0·671-0·909, bespoke 0·942 [0·892-0·982]], p=0·0070). Performance also reduced when tested on the 3nethra neo imaging device (CFDL 0·865 [0·742-0·965] and bespoke 0·891 [0·783-0·977]). INTERPRETATION: Both bespoke and CFDL models conferred similar performance to senior paediatric ophthalmologists for discriminating healthy retinal images from ones with features of pre-plus or plus disease; however, CFDL models might generalise less well when considering minority classes. Care should be taken when testing on data acquired using alternative imaging devices from that used for the development dataset. Our study justifies further validation of plus disease classifiers in ROP screening and supports a potential role for code-free approaches to help prevent blindness in vulnerable neonates. FUNDING: National Institute for Health Research Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and the University College London Institute of Ophthalmology. TRANSLATIONS: For the Portuguese and Arabic translations of the abstract see Supplementary Materials section

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies

    Get PDF
    Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.Genetics of disease, diagnosis and treatmen

    Effect of Humans on Belief Propagation in Large Heterogeneous Teams

    No full text
    Members of large, heterogeneous teams often need to interact with different kinds of teammates to accomplish their tasks, teammates with dramatically different capabilities to their own. While the role of humans in teams has progressively decreased with the deployment of increasingly intelligent systems, they still have a major role to play. In this chapter, we focus on the role of humans in large, heterogeneous teams that are faced with situations, where there is a large volume of incoming, conflicting data about some important fact. We use an abstract model of both humans and agents to investigate the dynamics and emergent behaviors of large teams trying to decide whether some fact is true. In particular, we focus on the role of humans in handling noisy information and their role in convergence of beliefs in large heterogeneous teams. Our simulation results show that systems involving humans exhibit an enabler-impeder effect, where if humans are present in low percentages, they aid in propagating information; however when the percentage of humans increase beyond a certain threshold, they seem to impede the information propagation

    KCNA1 gain‐of‐function epileptic encephalopathy treated with 4‐aminopyridine

    No full text
    Abstract Precision medicine for Mendelian epilepsy is rapidly developing. We describe an early infant with severely pharmacoresistant multifocal epilepsy. Exome sequencing revealed the de novo variant p.(Leu296Phe) in the gene KCNA1, encoding the voltage‐gated K+ channel subunit KV1.1. So far, loss‐of‐function variants in KCNA1 have been associated with episodic ataxia type 1 or epilepsy. Functional studies of the mutated subunit in oocytes revealed a gain‐of‐function caused by a hyperpolarizing shift of voltage dependence. Leu296Phe channels are sensitive to block by 4‐aminopyridine. Clinical use of 4‐aminopyridine was associated with reduced seizure burden, enabled simplification of co‐medication and prevented rehospitalization

    Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning

    Get PDF
    Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration (AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically quantified biomarkers on OCT are likely to further elucidate structure–function correlation in GA and thus the pathophysiological mechanisms of disease development and progression. In this work, we aimed to predict visual function with machine-learning applied to automatically acquired quantitative imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was conducted. A deep-learning automated segmentation model was applied on OCT scans from 476 eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r2) and mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and LLVA (r2 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT biomarkers provided by our model are also prognostic
    corecore